
[No audio for this slide]

1

Welcome to the module covering Metadata and its closely related topic,
Megawidgets, part of the Hazard Services Foundational training course for Focal
Points.

My name is Eric Jacobsen, with the Warning Decision Training Division. If you have
questions about this course, or technical problems, please use the contact
information listed on this slide.

2

These are the objectives for this module. Please take a moment to review them,
then, when you’re done, click next to proceed with the module.

3

Metadata are one of several major configurable “components” in the Hazard Services
workflow. Here is a reminder of the overall Hazard Services workflow, initially
presented in the introductory, unified workflow module, with Metadata highlighted
here

As we’ll soon explore in greater detail, recall that, in the hazard vs product division
which underlies Hazard Services, metadata are principally relevant to characterizing
Hazard events.

4

Hazard Services defines metadata as the “atomic” attributes of a hazard. We’ll get
into what that means in more detail in the next slides, but recall that a fully-defined
hazard requires: a hazard type, an area (or geographic information), a time rang, and,
finally, other details to characterize it.

Except for area, these qualities are closely tied to the Hazard Information Dialogue,
and in fact the “details” section which makes up the bulk of the HID’s usefulness, is
exactly the interface for specifying a hazard’s metadata.

5

Here is an example of the “details” section of the HID for a Flash Flood Warning,
where we see the types of attributes that can make up hazard metadata. Again, the
selections made on the Hazard Information Dialogue directly translate to the
metadata for the hazard.

To summarize the common nature of attributes which can be selected here,
metadata are details which characterize the state and scope of a hazard, including but
not limited to: impacts, immediate cause, basis or source, other descriptive data
fields, and even calls-to-action if they characterize the risk specific to that hazard. As
“atomic” hazard information, metadata is not concerned with specific phrasing,
formatting, or even the type of product or VTEC information which are later used to
communicate about it.

To understand more about hazard metadata, users may right-click on a hazard in their
console and select “View Details for Selected Events”. The Event Details Viewer which
appears will, under “ATTRIBUTES,” show all the metadata fields attributed to that
hazard. This supplementary view at the hazard event is most likely to be of interest
when troubleshooting hazards, or when going “under-the-hood” to learn about
configuration opportunities.

6

So how does “metadata” matter to focal points?

The purpose of configuring metadata is to change information that can be attributed
to a hazard, which can include adding or removing attributes, changing choices, or
even changes to the behavior of fields or widgets used to specify these attributes.
Effectively, you change the metadata to change the Hazard Information Dialogue for a
hazard.

It’s important that Metadata are almost always hazard-specific. That is, most
metadata files are tailored to a one or at most a small handful of hazards with nearly
identical attribute needs. That affords focal points the flexibility to edit the HID for a
specific hazard, to implement custom behavior, without affecting other hazards.

7

Let’s talk about how metadata configuration files actually work.

8

Metadata configurations are accessible through the localization perspective under
the “Hazard Metadata” subdirectory of “Hazard Services”.

Overall, multiple files here represent the specification of metadata for each hazard
type. In addition, a few of the files seen here are “common” or shared among
multiple hazards. In particular, we point out “CommonMetaData.py” which is a
foundation on which many of the hazard-specific metadata are built, as we’ll see
shortly.

Although the file titles are usually descriptive enough, a focal point can ensure that
they’re editing the appropriate metadata file for their hazard by reviewing the
“HazardMetadata.py” file and finding the precise file mapping for their hazard type.
This relatively straightforward configuration file typically dedicates a line for mapping
each metadata file to the one or more hazard types which it should apply to. Crafted
with the nested dictionary structure we’re familiar with from the Python overview, it
is therefore easily modifiable with incremental overrides.

9

Each metadata file is a python file which, primarily, follows a class definition model.
This class definition, recalling the python overview module, relies on a parent
template, which is inherited by including it in parentheses on the first line. In this
case, we see that CommonMetaData is the template or “parent class” used as a
starting point for this file, which means that all the capabilities of CommonMetaData
are inherited without any further effort.

Most of each hazard-specific metadata file concerns itself with specifying the exact
fields, choices, values, and behavior needed for its given hazard. We’ll explain later
how many hazard-specific metadata files are built with an “a-la-carte” style design,
where they simply select from the options made available to them by their parent
metadata file.

10

The previously stated relation of the metadata file to the HID is especially clear if we
look at the main “execute” method which every metadata file must include.

This execute method contains, most notably, the crucial calls to assemble the HID
“details” section, one-by-one, though functions that generate the modular interfaces
known as megawidgets. You can see that each sub-interface of the HID matches
perfectly to the similarly-named functions calls, including their order.

11

There is a crucial pattern to how metadata files are organized which deserves
emphasis.

In general, each hazard has unique requirements for the layout and detailed options
within the HID. These two side-by-side HIDS for two different hazards do have
differences, as expected. Put another way, each hazard benefits from having its own,
targeted metadata definition file, and as previously stated, that’s typically the case.

However, this understates the similar functionality that many hazards, especially in a
common category, like Hydrology, can have. For example, as is illustrated by the
generally identical elements being highlighted on the screen, many hazards use
similar megawidgets, draw from identical call-to-action choices or other phrases, and
use the same back-end methods.

Although not all hazards will have as much in common as these two do, it’s still often
the case that, while the overall assembly of metadata might differ from hazard to
hazard, they draw from a common pool of “building blocks”, and it’s senseless to
define the exact same methods in every hazard file.

Hazard Services therefore adopts a multi-tiered metadata scheme, with common
functionality stored in a higher-level file that hazard-specific metadata can reference
as needed. In fact, this layered approach is not just unique to metadata… a tiered

12

organization for configuration is used in many other components of Hazard Services,
such as the Product Generation workflow, but that’s covered in a separate section.

12

What does multi-layered metadata look like in practice?

Let’s analyze where how one very common megawidget, that is, the sub-interface on
the HID, for the calls to action is produced, using the flash flood hazard type for
illustration. In doing so, we’ll initially bounce between two files. On the right is the
hazard-specific metadata file for the convective FFW type. On the left is
“commonMetadata,” which is a large collection of shared resources and method
definitions used by many hazards, as we’ll shortly see. In fact, let’s specially reserve
the left side of the screen for centralized files, as we’ll need to involve another one
shortly, versus files which are tailored to a single hazard, on the right.

We have already reviewed that the execute function is central to assembling each
hazard’s custom HID, so it’s no surprise that the hazard metadata file dictates
interface components, which includes (last in the list, and last on the HID) the
“getCTAs” request, highlighted here.

Now, “getCTAs” provides the general definition of the megawidget for calls to action.
We’ve seen that almost every hazard uses this megawidget, so it’s only practical to
place this definition in a central place, accessible by all. Thus it finds a home in the
common metadata, rather than being duplicated in every derivative hazard file.

Next, the CTA interface can’t be assembled without choices for the checkboxes,

13

hence an embedded function call to getCTAChoices. Because the CTA choices should
ultimately match the hazard, it should make sense that the hazard metadata file this
time defines this function, with a list of choices that suits its needs. Sure enough, we
can see this function simply returning a list of more functions, each of which in
particular appears to be related to populating a specific call-to-action

Picking the “ctaStayAway” method to follow one step further, we find we have to look
in a different file which holds all cta and impact statements, but a shared one very
much like common metadata. This single, centralized file is naturally called
“CallsToActionAndImpacts.py”, and resides in the “utilities” directory. Let’s disregard
for now HOW this file is linked, and follow the thread to our desired CTA…

Now we’re finally at the end of the ride… in the CallsToActionAndImpacts file, we
discover that the ctaStayAway function returns a dictionary consisting of several text
strings, one of which is, at last, the label used to populate “Stay Away “ in the Call to
Action megawidget. Success!

But why was the last link in this chain, the call-to-action definition itself, stored in a
separate, centralized file and not in the hazard-specific one itself? Once again,
though it might be used by the FFW hazard type, “stay away” is a frequently used call-
to-action displayed by many hazards. Defining this and most of the CTAs in a central
file is a matter of practicality, since there they are defined and maintained in only
one place, where they can be accessed by many hazards.

13

Stepping back, and summarizing the important points…

Multi-layered metadata exists because many aspects of metadata serve a common
purpose and are shared across hazards. A parent metadata class housing any method
which is more communal than hazard-specific is a convenient, single point of
maintenance. Many megawidget definitions, choices, and other functions are housed
in these parent metadata classes.

In turn, hazard-specific metadata, which are python classes, inherit this common
class by design when they are created, gaining full access to the communal methods
defined within. This, by the way, is a GREAT real-world example of the
implementation and advantages of the class inheritance topic covered in the python
overview, which might understandably have seemed a little abstract when first
introduced.

Now, the utilities file for calls to action and impacts is a little bit of an oddball, since it
doesn’t strictly fit the “metadata class” mold. But what’s more important than the
mechanism of how it’s linked, is that, Although the CallsToActionAndImpacts file may
come from a non-metadata directory, like CommonMetadata, it represents a
centralized side of Metadata Management, which cooperates with hazard-specific
files for multi-layered metadata construction.

14

This structure provides order and prevents redundancy in the metadata file set, but it
may cause problems for Focal Points trying to trace a function to its roots. To that
end, keep the localization perspective search tool handy, since it can be used to easily
find function references across files.

Finally, when making configuration changes in a multi-layered metadata framework,
Focal Points should strive to differentiate between changes that are truly hazard-
specific and those which are likely to be multi-purposed, and if the latter, use the
common or parent metadata classes to house those capabilities.

14

Before we transition to our second topic in this module, there’s one further type of
metadata file which, it could be said, blurs the line just slightly between hazard and
product. These are the product staging metadata.

These files are very much in the minority, but are identifiable by the three-letter PILs
in their filename, such as the FFA, FLW, and FLS seen in this example, in contrast to
the typical structure seen in hazard-specific metadata of a two-letter phenomenon,
followed by an underscore, followed by a one-letter significance. This inclusion of
product identifiers in the filename signifies their unusual dependence on certain
products to be triggered.

Now, while the overwhelming majority of metadata populate choices in Hazard
Information Dialogue, these unique exceptions manifest in a second interface, called
the Product Staging Dialogue, which appears AFTER the user has hit “preview” on the
HID. We see a simple example of this with a River Flood Watch, using “Snow melt or
Ice jam” as the immediate cause for demonstration purposes.

Without getting too distracted by this atypical variety, these specialized metadata
serve a unique need where metadata-like attributes are determined to be needed by
certain products. As product-serving attributes, they are only called upon if the
relevant product is generated. They may include attributes similar to other metadata,
such as call-to-action specifications, but which are intended to address the entire

15

product.

But from a configuration standpoint, aside from the unique way in which they are
called upon and presented, these product-staging metadata files share the same
framework as regular metadata, in terms of their structure, dependence on Common
Metadata, use of megawidgets, and so on.

15

In this next subsection, we briefly but formally introduce “megawidgets” and the
importance they bear on Hazard Services interfaces.

16

The extensive customizability of Hazard Services is no less true of its displays.
Megawidgets are the modular user interface elements used to construct these
displays.

Designed to be fully editable through simple Python dictionaries, megawidgets are
the building blocks which construct the Hazard Information Dialogue, as well as other
prompts and dialogues like those which appear with recommenders and for product
staging. The set of pre-built megawidgets available to use includes buttons,
checkboxes, combo or drop-down boxes, and many more.

17

The extensive customizability of Hazard Services is no less true of its displays.
Megawidgets are the modular user interface elements used to construct these
displays.

Designed to be fully editable through simple Python dictionaries, megawidgets are
the building blocks which construct the Hazard Information Dialogue, as well as other
prompts and dialogues like those which appear with recommenders and for product
staging. The set of pre-built megawidgets available to use includes buttons,
checkboxes, combo or drop-down boxes, and many more.

18

Another example of a megawidget and its underlying code is shown here, this time
one which creates tabbed “pages” on the HID, useful for organizing other groups of
megawidgets. We’re using the same FL.W Hazard Information Dialogue as before for
this example.

Although we’ve emphasized that, for practicality, many megawidgets are defined in
commonMetadata, they can certainly be specified in other files, and in fact the
megawidget framework is used in many other components of Hazard Services to
create dialogues. In this case, we see the tab format specifically defined in the
hazard-specific Metadata for FL.W. Evidently, the particular design and choice of tabs
in this layout is specific enough to FL.W that it’s sensible to store its setup within that
file.

The megawidget toolkit was designed for Hazard Services to enable simple
specification of interface elements through straightforward python dictionaries. By
specifying the field Type, field name (which again is needed within code to get its
value later), and a handful of other fields (determined by checking the requirements
for each megawidget in GSD’s documentation), Focal Points have extensive control
over how the Hazard Information Display and other dialogues look and behave. In the
case of this “TabbedComposite” megawidget, we see that a special sub-dictionary for
pages is necessary, with pageNames and fields for each tab, again outlined clearly in
the megawidget reference.

19

Due to their importance to Hazard Services, and the likelihood that focal points may
want to tweak their behavior or otherwise alter megawidgets in the HID, focal points
are encouraged to refer to a comprehensive document on megawidgets provided by
GSD in the references.

19

In this section we’ve covered Hazard Metadata, and their inherent relation to the
Hazard Information Dialogue. Hazard Metadata are generally unformatted, product-
independent attributes which characterize the nature of a hazard, and owing to the
typical differences between attributes of one hazard type and another, metadata
configurations are most often, understandably, separated into different, hazard-
specific files. These files directly dictate the assembly and choices available in the HID
for that hazard type.

But we also saw that there’s more to metadata than just hazard-specific files. Despite
differences in their assembly, a respectable degree of similarity in the building blocks
of the HID, such as megawidgets and the choices therein, make it practical to specify
common elements in a shared, parent metadata file, resulting in a multi-layered
metadata structure. This use of centralized files, while maybe uncomfortable at the
outset, concentrates a lot of useful functionality in just one place for dependent files
to use, ultimately greatly simplifying maintenance.

Finally we’ve covered megawidgets and their importance in assembling Hazard
Services’ interactive interfaces. Megawidgets are a custom Python library
implemented for Hazard Services, which enables simple Python dictionaries with
standardized language to create a wide variety of complex and useful interface
elements, including checkboxes, menus, tab groupings, and much more. By referring
to GSD’s thorough documentation on the necessary parameters for each

20

megawidget, focal points will be able to customize the pieces which make up the
interactive dialogues in Hazard Services.

20

[No audio for this slide]

21

22

